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Abstract. The general shape equation describing the forms of vesicles is a highly nonlinear partial differen-
tial equation for which only a few explicit solutions are known. These solvable cases are briefly reviewed and
a new analytical solution which represents the class of the constant mean curvature surfaces is described.
Pearling states of the tubular fluid membranes can be explained as a continuous deformation preserving
membrane mean curvature.

PACS. 87.16.Dg Membranes, bilayers, and vesicles – 68.15.+e Liquid thin films – 87.10.+e General theory
and mathematical aspects – 02.40.Hw Classical differential geometry

1 Introduction

In water and at low concentrations some amphiphilic
molecules like phospholipids assemble themselves and
form flexible bilayers which can close in a single shell
which nowadays is called a vesicle. Because these vesi-
cles can be easily isolated and studied they are considered
to be sufficiently realistic models of biomembranes and
cells. On the other hand, since the thickness of the typi-
cal bilayer is in the nm range and the typical diameter of
vesicles is in the µn range, one can regard the membrane
bilayer as a two-dimensional surface in three-dimensional
Euclidean space. Therefore, before starting to discuss vesi-
cle morphology it is necessary to have a short summary
of the classical differential geometry of surfaces. Then the
Canham-Helfrich bending energy and the corresponding
general shape equation into which enter such geometric
quantities as the mean and Gaussian curvature, the area
and the volume enclosed by the membrane will be intro-
duced.

Finally, the list of the explicit solutions to the above
mentioned equation will be briefly discussed and the new
analytical formulae representing the axisymmetric con-
stant mean curvature surfaces will be derived.

2 Differential geometry of surfaces

As the Canham-Helfrich approach is based on some no-
tions of classical differential geometry we will sketch them
below. Modern expositions of the subject can be found,
e.g. in the books by Berger and Gostiaux [2] and Oprea [9].
The membrane is represented as a closed surface S in space
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and the position vector to a point on S is given in terms
of two parameters u, v which label the material points

x = x[u, v] = (x(u, v), y(u, v), z(u, v)) .

The surface itself is specified by its first and second fun-
damental forms

I = E du2 + 2F dudv +Gdv2 (1)

and

II = L du2 + 2M dudv +N dv2 (2)

where the coefficients are given by

E = E[u, v] = xu · xu F = F [u, v] = xu · xv
G = G[u, v] = xv · xv L = L[u, v] = n · xuu
M = M [u, v] = n · xuv N = N [u, v] = n · xvv (3)

where n is the unit vector normal to S

n = n[u, v] =
xu × xv
|xu × xv| · (4)

By definition the normal curvature kn in the direction
(du : dv) is

kn =
II

I
=
L du2 + 2M dudv +N dv2

E du2 + 2F dudv +Gdv2
, (5)

and the directions in which it attains extremal values
(maximum and minimum) are called principal directions.
If the coordinate curves coincide with the principal direc-
tions then

F = M ≡ 0 (6)
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and the corresponding curvatures in these directions can
be found by the formulae

k1 =
L

E
, k2 =

N

G
· (7)

It should be noted also that in this situation k1 and k2

are the principal curvatures along the meridians and paral-
lels of latitude respectively. Classical differential geometry
operates also with other important notions which are of
immediate interest for us. These are the Gaussian curva-
ture K and the mean curvature H

K = k1 · k2, H =
k1 + k2

2
, (8)

and the surface area element dA

dA =
√
EG− F 2 dudv =

√
EGdudv. (9)

3 Helfrich model and shape equation

According to the fluid mosaic model the biomembranes
are considered as bilayers of amphiphilic lipids in which
the lipid molecules can move freely on the membrane sur-
faces while other constituent molecules – proteins and en-
zymes are embedded in the lipid bilayers. Therefore no
elastic energy is associated with the displacements within
a given surface and only the energy coming from bending
of the membrane should be taken into account. This is
the essence of Canham’s proposal [3] which states that
the bending energy of membranes should be identified
with the Willmore [14] functional built upon the curva-
tures of the embedded shape. This idea has been subse-
quently developed by Helfrich [5] who had introduced the
so called spontaneous curvature Ih that arises from the
chemical asymmetry between interior and exterior of the
membrane. So, within some topological class of surfaces,
Helfrich’s bending energy is modelled by the functional

F (S) =
k

2

∫
(k1 + k2 − Ih)2 dA + λ

∫
dA + δp

∫
dV

(10)

in which k is bending rigidity, k1 and k2 are the principal
curvatures, δp and λ are Lagrange multipliers due to the
constraints of constant volume and area which denote re-
spectively a tensile stress and osmotic pressure difference
between outer and inner media. When spontaneous curva-
ture is set to be equal to zero the Helfrich model reduces
to the Canham model. The critical points of the Helfrich
energy at which the above functional attains its mini-
mum are assumed to correspond to the equilibrium shapes
of phospholipid vesicles. Taking the variational derivative
one gets the so called general shape equation of Ou-Yang
and Helfrich [10] which reads

∆H + 2
(
H +

Ih
2

) (
H2 −K − Ih

2

)
− σH +

ρ

2
= 0 (11)

where ∆ = 1/
√|g|∂i(gij

√|g|∂j) is the Laplace-Beltrami
operator of S, |g| = EG − F 2 is the determinant of the
metric g, gij = (g−1)ij , while σ = λ/k and ρ = δp/k
denote the Lagrange multipliers, rescaled by k.

It is clear that (11) is a fourth order highly non-
linear partial differential equation and that finding any
non-trivial solution of it is not an easy task. As always,
symmetry is of some help. Assuming that our vesicles are
axisymmetric the shape equation reduces to a third or-
der nonlinear PDE and this can be further integrated so
that the resulting equation simplifies to the following one
which of a second order [15]

cos2 ψ
d2ψ

dx2
− sin 2ψ

4

(
dψ
dx

)2

+
cos2 ψ
x

dψ
dx

− sin 2ψ
2x2

− ρx

2 cosψ
− sinψ

2 cosψ

(
sinψ
x

− Ih
)2

− σ sinψ
cosψ

=
C

x cosψ
·

(12)

Here, x is the distance of the surface point from the sym-
metry axis z, ψ(x) = ψ is the angle of the surface tangent
with the x axis and C is the integration constant.
In this parameterization the principal curvature along
the meridians is cosψ dψ

dx and the one along the parallels
is sinψ

x . The surface contour itself can be obtained by in-
tegration of the first order equation

dz
dx

= tanψ(x) (13)

which reflects the geometry of this plane curve.
Naito et al. [7] have shown that under some conditions on
the constants a, C, σ and ρ, i.e. a = Ih, C = 2Ih, σ = ρ = 0

sinψ = x(a lnx+ b) (14)

represents a rigorous analytical solution of (12). To the
previously known solutions of (11) – spheres and cylinders
– the same authors [8] have added catenoids, nodoids and
unduloids described by the general formula

sinψ = ax+
d

x
· (15)

Here the a = 0 case corresponds to the catenoid, when
ad < 0 one gets nodoids and in the case 0 < ad < 1/4,
unduloids. While (15) describes constant mean curvature
surfaces with H = a as one can easily check by inserting
the above expression into the general formula

H =
(

cosψ
dψ
dx

+
sinψ
x

)
/2 (16)

the authors of [8] have noticed that

sinψ = ax+ b+
d

x
(17)

is still an exact solution of (12) but in this case H �= const.
The complete list of the analytical solutions includes
Willmore tori [11] and Dupin cyclides [12]. The book [13]
and especially its chapter 4 contains many of the details
regarding all kinds of solutions mentioned above.
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4 Constant mean curvature surfaces

Extensive numerical computations had shown that (14)
could be used to represent the curious biconcave shape
of the red blood cell membrane, while via (15) one could
generate the rotational constant mean curvature surfaces
discovered a long time ago by Delaunay and bearing his
name. The difficulty with both (14) and (15) is that the
respective profile curve cannot be obtained in analytical
form by integrating (13). Fortunately in the case of con-
stant mean curvature surfaces there exist alternatives. The
first one is that the contour representing these surfaces is
given up to integration in the parametric form [4] (it is
assumed that the symmetry axis is x)

x = a sinϕ− a tanϕ
√

1 + α− sin2 ϕ

+
∫ ϕ

0

aαdϕ

cos2 ϕ
√

1 + α− sin2 ϕ

y = −a cosϕ+ a

√
1 + α− sin2 ϕ (18)

where a �= 0 and α > 0 are two constants. The mean cur-
vature H of these surfaces is 1

2a . Delaunay [4] has isolated
this class of surfaces guided by a nice geometrical argu-
ment - they are all just the traces of the foci of nondegen-
erate conics when they roll along a straight line in a plane
(roulettes in French). In an Appendix to the same paper
Sturm characterized Delaunay’s surfaces variationally as
those rotational surfaces having a minimal lateral area at
a fixed volume. It turns out that these curves satisfy the
equation (it is assumed again that the axis of rotation is x)

dx =
(y2 + c)dy√

4a2y2 − (y2 + c)2
(19)

where c is some constant. Further on we will assume that
this constant is strictly positive, i.e. c = b2 (this case
corresponds to the roulette of an ellipse with axes a and b,
a > b). The expression in the radicand is real just when y
varies in the interval (α, β), where

α = a−
√
a2 − b2, β = a+

√
a2 − b2. (20)

Introducing the eccentricity ε of the ellipse, i.e.

ε =

√
1 − b2

a2
(21)

the interval endpoints can be rewritten in the form

α = a(1 − ε), β = a(1 + ε). (22)

This suggests the change of variable y as follows

y = a
√

1 + ε2 + 2ε sinu, u ∈ [−π/2, π/2]. (23)

Performing this change one gets

dy → aε cosudu√
1 + ε2 + 2ε sinu

, y2 + b2 → 2a2(1 + ε sinu),

and √
4a2y2 − (y2 + b2)2 → 2εa2 cosu.

As a result the integral in which we are interested becomes

x(u) = a

u∫
−π/2

(1 + ε sinu)du√
1 + ε2 + 2ε sinu

(24)

and can be split into the following types:
∫

du√
p+ q sinu

= − 2√
p+ q

F (φ, k)

and
∫

sinudu√
p+ q sinu

=
2p

q
√
p+ q

F (φ, k) − 2
√
p+ q

q
E(φ, k).

Here F (φ , k) and E(φ , k) denote the first, respectively
the second kind of incomplete elliptic integrals in which

φ = arcsin
√

1− sin u
2 and the so-called elliptic modulus k

is given by
√

2q
p+q . In our case p = 1 + ε2, q = 2ε so that

φ =
π

4
− u

2
, and k =

2
√
ε

1 + ε
· (25)

Taken together the above considerations give us

x(u) = a (1 − ε) [F (
2u− π

4
, k) +K(k)]

a (1 + ε) [E(
2u− π

4
, k) + E(k)] (26)

where K(k) = K(π/2, k) and E(k) = E(π/2, k) are the
complete elliptic integrals of the first, respectively the sec-
ond kind. The definition and properties of the elliptic func-
tions and integrals can be found e.g. in Jahnke et al. [6].
Revolving the curve (x(u), y(u)) (with x(u) and y(u) given
by (26) and (23)) around the x axis leads to a surface of
revolution S with position vector

x[u, v] = (x(u), y(u) cos v, y(u) sin v). (27)

The coefficients of its first and second fundamental forms
are found to be (a computer algebra system like Mathe-
matica or Maple could be of great help here):

E = a2, F = 0, G = a2 (1 + ε2 + 2 ε sinu)

L =
a ε (ε+ sinu)

1 + ε2 + 2 ε sinu
, M = 0, N = a (1 + ε sinu)

(28)

and therefore

H ≡ 1
2a

(29)

as was claimed above.
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Fig. 1. The profile curve of the unduloid with parameters
a = 12 and ε = 0.85.
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Fig. 2. The profile curve of the nodoid with parameters a = 5
and ε = 1.25.

In addition, it is clear that (27) is a solution of the
general shape equation (11) provided

a = −Ih−1 and ρ = −σIh. (30)

A few extra remarks are in order here. The first one is
about the values which ε can take. Up to now it was
implicitly assumed that they belong to the interval (0, 1)
but it is easy to see that (27) produces a constant mean
curvature (possibly not embedded but immersed) surface
for any ε ∈ R

+. More precisely:

– for ε = 0 the elliptic modulus k is zero as well and one
gets a circular cylinder.

– for ε ∈ (0, 1) the profile curve is wavy (see Fig. 1.) and
the revolved surface is called an unduloid.

– when ε = 1 the resulting surface is a sequence of
spheres centered on the x axis.

– if ε > 1 one gets the so called nodary curve (see
Fig. 2) and respectively a self-intersecting nodoid sur-
face which describes e.g. cell deformation under com-
pression and will be discussed in more details else-
where.

The second remark is about the recent hypothesis raised
by Ou-Yang et al. [13] that the extension (17) of the con-
stant mean curvature solution (15) could be appropriate
for the description of the pearling cylinder observed by
Bar-Zip and Moses [1]. Looking at Figures 3 and 4 in their
paper one can understand how the cylinder can be de-
formed in a continuous way to the “pearling state” shown
in the Figure 3 below. Without any doubt this transition
corresponds to the continuous change of the parameter ε
from 0 to the values that are close to, but strictly less
than 1.

A remarkable fact is that this smooth transformation
preserves the mean curvature!

Fig. 3. Pearls obtained via (27) with a = 5 and ε = 0.99.

Quite interesting also is the possibility of introducing
an additional non-zero deformation parameter µ, namely

x̃[u, v] = (x(µu), y(µu) cos v, y(µu) sin v)/µ. (31)

It is easily checked that in this case the mean curva-
ture is

H =
µ

2a
(32)

and that (31) is a solution of the general shape equation
when

µ = −aIh and ρ = −σIh. (33)

In some sense the presence of this second parameter is not
by chance because otherwise we will not have constant
mean curvature membranes of different geometry and size
as these are controlled just by a and µ.
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